General Instructions

- This question booklet contains 150 Multiple Choice Questions (MCQs).
 - Section-A: Physics & Chemistry 50 Questions each and
- Section-B: Mathematics 50 Questions.
- Choice and sequence for attempting questions will be as per the convenience of the candidate.
- Read each question carefully.
- Determine the one correct answer out of the four available options given for each question.
- Each question with correct response shall be awarded one (1) mark. There shall be no negative marking.
- No mark shall be granted for marking two or more answers of same question, scratching or overwriting.
- Duration of paper is 3 Hours.

SECTION-A

PHYSICS

- For the same cross-sectional area and for a given load, the ratio of depressions for the beam of a square cross-section and circular cross-section is

- (a) $3:\pi$ (b) $\pi:3$ (c) $1:\pi$ (d) $\pi:1$
- If three equal masses m are placed at the three vertices of an equilateral triangle of side 1/m then what force acts on a particle of mass 2m placed at the centroid?
 - (a) Gm²
- (b) 2Gm² (c) Zero (d) -Gm²
- In a reverse biased diode when the applied voltage changes by I V, the current is found to change by 0.5 μA. The reverse bias resistance of the diode is
 - (a) $2 \times 10^5 \text{ W}$
- (b) $2 \times 10^6 \text{ W}$
- (c) 200 Ω
- (d) 2 Ω
- Two simple harmonic motions are represented

by the equations $y_1 = 0.1 \sin \left(100\pi t + \frac{\pi}{3} \right)$ and $y_1 = 0.1 \cos \pi t$.

The phase difference of the velocity of particle 1 with respect to the velocity of particle 2 is

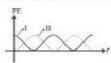
- (a) $\frac{\pi}{3}$ (b) $\frac{-\pi}{6}$ (c) $\frac{\pi}{6}$ (d) $\frac{-\pi}{3}$

- A stretched wire 60 cm long is vibrating with its fundamental frequency of 256 Hz. If the length of the wire is decreased to 15 cm and the tension remains the same. Then the fundamental freugency of the vibration of the wire will be
 - (a) 1024
- (b) 572
- (c) 256
- (d) 64
- A soap film of surface tension 3×10^{-2} formed in a rectangular frame cam support a straw as shown in Fig. If $g = 10 \text{ ms}^{-12}$, the mass of the straw is
 - (a) 0.006 g
 - (b) 0.06 g
 - (c) 0.6g
 - (d) 6g
- Straw

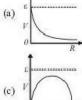
10 cm -

Soap

film


- A circular disc of radius R is removed from a bigger circular disc of radius 2R such that the circumferences of the discs coincide. The centre of mass of the new disc is \alpha/R form the centre of the bigger disc. The value of α is
 - (a) 1/4
- (b) 1/3
- (c) 1/2
- (d) 1/6

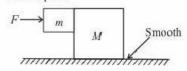
- Two sources of equal emf are connected to an external resistance R. The internal resistance of the two sources are R_1 and R_2 ($R_2 > R_1$). If the potential difference across the source having internal resistance R2 is zero, then
 - (a) $R = R_2 R_1$
 - (b) $R=R_2\times(R_1+R_2)/(R_2-R_1)$
 - (c) $R = R_1 R_2 / (R_2 R_1)$
 - (d) $R = R_1 R_2 / (R_1 R_2)$
- A vessel contains oil (density = 0.8 gm/cm3) over mercury (density = 13.6 gm/cm3). A homogeneous sphere floats with half of its volume immersed in mercury and the other half in oil. The density of the material of the sphere in gm/cm3 is
 - (a) 3.3
- (b) 6.4
- (c) 7.2
- (d) 12.8
- 10. A current of I ampere flows in a wire forming a circular arc of radius r metres subtending an angle θ at the centre as shown. The magnetic field at the centre O in tesla is


- 11. A broadcast radio transmitter radiates 12 kW when percentage of modulation is 50%, then the unmodulated carrier power is
 - (a) 5.67 kW
- (b) 7.15 kW
- (c) 9.6kW
- (d) 12 kW
- 12. Two trains are moving towards each other with speeds of 20m/s and 15 m/s relative to the ground. The first train sounds a whistle of frequency 600 Hz. The frequency of the whistle heard by a passenger in the second train before the train meets, is (the speed of sound in air is 340 m/s)
 - (a) 600 Hz
- (b) 585 Hz
- (c) 645 Hz
- (d) 666Hz
- 13. A particle of mass M is situated at the centre of a spherical shell of same mass and radius a. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be:

- 14. For a particle executing SHM the displacement x is given by $x = A \cos \omega t$. Identify the graph which represents the variation of potential energy (P.E.) as a function of time t and displacement x.

- (a) I, III
- (b) II, IV
- (c) II, III
- (d) I,IV
- A beam of electrons is moving with constant velocity in a region having simultaneous perpendicular electric and magnetic fields of strength 20 Vm-1 and 0.5 T respectively at right angles to the direction of motion of the electrons. Then the velocity of electrons must be
 - (a) 8 m/s
- (b) 20 m/s
- (c) 40 m/s
- (d) $\frac{1}{40}$ m/s
- The period of oscillation of a magnet in a vibration magnetometer is 2 sec. The period of oscillation of a magnet whose magnetic moment is four times that of the first magnet is
 - (a) 1 sec
- (b) 5 sec
- (c) 8 sec
- (d) 0.5 sec
- 17. A cell having an emf ε and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by

- The transition from the state n = 4 to n = 3 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition
 - (a) $2 \rightarrow 1$
- (b) $3 \rightarrow 2$
- (c) $4 \rightarrow 2$
- (d) 5 → 4
- 19. A light rod of length 2m suspended from the ceiling horizontally by means of two vertical wires of equal length. A weight W is hung from a light rod as shown in figure.


The rod hung by means of a steel wire of crosssectional area $A_1 = 0.1$ cm² and brass wire of crosssectional area $A_2 = 0.2$ cm². To have equal stress in both wires, $T_1/T_2 =$

- (a) 1/3
- (b) 1/4
- (c) 4/3
- (d) 1/2
- 20. For which angle between two equal vectors A and B will the magnitude of the sum of two vectors be equal to the magnitude of each vector?
 - (a) $\theta = 60^{\circ}$
- (b) $\theta = 120^{\circ}$
- (c) $\theta = 0^{\circ}$
- (d) $\theta = 90^{\circ}$
- 21. The width of a slit is 0.012 mm. Monochromatic light is incident on it. The angular position of first bright line is 5.2°. The wavelength of incident light is $[\sin 5.2^{\circ} = 0.0906]$.
 - (a) 6040 Å
- (b) 4026 Å
- (c) 5890 A
- (d) 7248 Å
- 22. The least coefficient of friction for an inclined plane inclined at angle or with horizontal in order that a solid cylinder will roll down without slipping is
 - (a) $\frac{2}{3} \tan \alpha$
- (b) $\frac{2}{7}\tan \alpha$
- (c) tan a
- 23. Two balls are projected at an angle θ and (90° θ) to the horizontal with the same speed. The ratio of their maximum vertical heights is
 - (a) 1:1
- (b) tan θ:1
- (c) 1: tan θ
- (d) tan2 θ:1

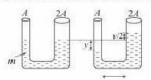
- A rod PQ of mass M and length L is hinged at end P. The rod is kept horizontal by a massless string tied to point Q as shown in figure. When string is cut, the initial angular acceleration of the rod is
 - (a) g/L
 - (b) 2g/L
- Let Q denote the charge on the plate of a capacitor of capacitance C. The dimensional formula for $\frac{Q^2}{C}$ is
 - (a) [L2M2T]
- (b) [LMT2]
- (c) [L2MT-2]
- (d) [L2M2T2]
- A common emitter amplifier has a voltage gain of 50, an input impedance of 100Ω and an output impedance of 200Ω . The power gain of the amplifier is
 - (a) 500
- (b) 1000 (c) 1250 (d) 50

- A glass flask is filled up to a mark with 50 cc of mercury at 18°C. If the flask and contents are heated to 38°C, how much mercury will be above the mark? (α for glass is 9×10^{-6} /°C and coefficient of real expansion of mercury is 180 × 10-6/°C)
 - (a) 0.85 cc
- (b) 0.46 cc
- (c) 0.153 cc
- (d) 0.05 cc
- With the increase in temperature, the angle of contact
 - (a) decreases
 - (b) increases
 - (c) remains constant
 - (d) sometimes increases and sometimes decreases
- A prism has a refracting angle of 60°. When placed in the position of minimum deviation, it produces a deviation of 30°. The angle of incidence is
 - (a) 30°
- (b) 45°
- (c) 15° (d) 60°
- A planet in a distant solar system is 10 times more massive than the earth and its radius is 10 times smaller. Given that the escape velocity from the earth's surface is 11 km s-1, the escape velocity from the surface of the planet would be
 - (a) 1.1 km s⁻¹
- (b) 11 km s⁻¹
- (c) 110 km s⁻¹
- (d) 0.11kms⁻¹

- 31. The fringe width in a Young's double slit 38. experiment can be increased if we decrease
 - (a) width of slits
 - (b) separation of slits
 - (c) wavelength of light used
 - (d) distance between slits and screen
- 32. Two radiations of photons energies 1 eV and 2.5 eV, successively illuminate a photosensitive metallic surface of work function 0.5 eV. The ratio of the maximum speeds of the emitted electrons is (a) 1:4 (b) 1:2 (c) 1:1 (d) 1:5
- 33. An electromagnetic wave going through vacuum is described by $E = E_0 \sin(kx - \omega t)$; $B = B_0 \sin(kx - \omega t)$ – ωt). Which of the following equations is true?
 - (a) $E_0 k = B_0 \omega$
- (b) $E_0 \omega = B_0 k$
- (c) $E_0 B_0 = \omega k$
- (d) None of these
- 34. A galvanometer of resistance 100Ω gives a full scale deflection for a current of 10-5 A. To convert it into a ammeter capable of measuring upto 1 A, we should connect a resistance of
 - (a) I Ω in parallel
- (b) $10^{-3} \Omega$ in parallel
- (c) $10^5 \Omega$ in series
- (d) 100 Ω in series
- 35. A spherical ball of iron of radius 2 mm is falling through a column of glycerine. If densities of glycerine and iron are respectively 1.3×10^3 kg/m³ and 8×10^3 kg/m³. η for glycerine = 0.83 Nm⁻² sec, then the terminal velocity is
 - (a) 0.7 m/s
- (b) 0.07 m/s
- (c) 0.007 m/s
- (d) 0.0007 m/s
- 36. A Carnot engine whose low temperature reservoir is at 7°C has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how many degrees should the temperature of the high temperature reservoir be increased?
 - (a) 840 K (b) 280 K (c) 560 K (d) 380 K
- 37. The two blocks, m = 10 kg and M = 50 kg are free to move as shown. The coefficient of static friction between the blocks is 0.5 and there is no friction between M and the ground. A minimum horizontal force F is applied to hold m against M that is equal to

(a) 100N (b) 50N (c) 240N (d) 180N

- The pressure on a square plate is measured by measuring the force on the plate and length of the sides of the plate by using the formula
 - $P = \frac{F}{\ell^2}$. If the maximum errors in the measurement
 - of force and length are 6% and 3% respectively, then the maximum error in the measurement of pressure is
 - (a) 1%
- (b) 2%
- (c) 12%
 - (d) 10%
- An electron of mass m and charge e initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time t ignoring relativistic
- (c) $\frac{-mh}{e Et^2}$
- A plano-convex lens is made of material of refractive index 1.6. The radius of curvature of the curved surface is 60 cm. The focal length of the lens is
 - (a) 50 cm
- (b) 100 cm
- (c) 200 cm
- (d) 400 cm
- A mass m is revolving in a vertical circle at the end of a string of length 20 cm. By how much does the tension of the string at the lowest point exceed the tension at the topmost point?
 - (a) 2 mg (b) 4 mg (c) 6 mg (d) 8 mg
- Two conducting circular loops of radii R, and R, are placed in the same plane with their centres coinciding. If R1>>R2, the mutual inductance M between them will be directly proportional to
 - (a) R₁/R₂
- (b) R₂/R₁
- (c) R_1^2 / R_2
- (d) R_2^2/R_1
- If $x = at + bt^2$, where x is the distance travelled by the body in kilometers while t is the time in seconds, then the unit of b is
 - (a) km/s
- (b) kms
- (c) km/s2
- (d) kms2
- An organ pipe P1 closed at one end vibrating in its first overtone and another pipe P2 open at both ends vibrating in third overtone are in resonance with a given tuning fork. The ratio of the length of P_1 to that of P_2 is


 - (a) 8/3 (b) 3/8 (c) 1/2

- 45. If one mole of monoatomic gas $\left(\gamma = \frac{5}{3}\right)$ is mixed with one mole of diatomic gas $\left(\gamma = \frac{7}{5}\right)$, the value of y for the mixture is

 - (a) 1.40 (b) 1.50
- (c) 1.53 (d) 3.07
- 46. In a series resonant circuit, having L,C and R as its elements, the resonant current is i. The power
 - dissipated in circuit at resonance is (b) zero
 - (c) i2 ωL
- (d) i2 R

Whereas to is angular resonant frequency

47. A U-tube is of non uniform cross-section. The area of cross-sections of two sides of tube are A and 2A (see fig.). It contains non-viscous liquid of mass m. The liquid is displaced slightly and free to oscillate. Its time period of oscillations is

- (d) None of these
- 48. From a supply of identical capacitors rated 8 mF, 250V, the minimum number of capacitors required to form a composite 16 mF, 1000V is
 - (a) 2
- (b) 4
- (c) 16 (d) 32
- 49. An α-particle of energy 5 MeV is scattered through 180° by a fixed uranium nucleus. The distance of closest approach is of the order of
 - (a) 10^{-12} cm
- (b) 10⁻¹⁰ cm
- (c) 10⁻²⁰ cm
- (d) 10⁻¹⁵ cm
- 50. A moving coil galvanometer has N number of turns in a coil of effective area A, it carries a current I. The magnetic field B is radial. The torque acting on the coil is
 - (a) NA^2B^2I
- (b) NABI2
- (c) N2ABI
- (d) NABI

CHEMISTRY

- 51. KO, (potassium super oxide) is used in oxygen cylinders in space and submarines because it
 - (a) absorbs CO, and increases O, content
 - (b) eliminates moisture
 - (c) absorbs CO,
 - (d) produces ozone.
- Which of the following is a bactericidal antibiotic?
 - (a) Ofloxacin
- (b) Tetracycline
- (c) Chloramphenicol
- (d) Erythromycin
- 53. An ideal gas expands against a constant external pressure of 2.0 atmosphere from 20 litre to 40 litre and absorbs 10 kJ of heat from surrounding. What is the change in internal energy of the system? (given: latm-litre = 101.3 J)
 - (a) 4052 J
- (b) 5948 J
- (c) 14052 J
- (d) 9940 J
- In a solution of CuSO₄ how much time will be required to precipitate 2 g copper by 0.5 ampere current?
 - (a) 12157.48 sec
- (b) 102 sec
- (c) 510 sec
- (d) 642 sec
- Which of the following compounds will undergo self aldol condensation in the presence of cold di lute alkali?
 - (a) $CH_2 = CH CHO$ (b) $CH \equiv C CHO$
- - (c) C₆H₅CHO
- (d) CH3CH2CHO
- An element having an atomic radius of 0.14 nm crystallizes in an fcc unit cell. What is the length of a side of the cell?
 - (a) 0.56 nm
- (b) 0.24 nm
- (c) 0.96 nm
- (d) 0.4nm
- 57. 120 g of an ideal gas of molecular weight 40 g mol-1 are confined to a volume of 20 L at 400 K.

R=0.0821 L atm K-1 mol-1, the pressure of the gas is

- (a) 4.90 atm
- (b) 4.92 atm
- (c) 5.02 atm
- (d) 4.96 atm

- 58. Fluorobenzene (C,H,F) can be synthesized in the laboratory
 - (a) by direct fluorination of benzene with F2 gas
 - (b) by reacting bromobenzene with NaF solution
 - (c) by heating phenol with HF and KF
 - (d) from aniline by diazotisation followed by heating the diazonium salt with HBF,
- 59. Substance used for the preservation of coloured fruit juices is
 - (a) benzene
 - (b) benzoic acid
 - (c) phenol
 - (d) sodium meta bisulphite
- 60. Which of the following compounds gives dye test?
 - (a) Aniline
- (b) Methylamine
- (c) Diphenylamine
- (d) Ethylamine
- The correct statement with regard to H₂ and H₂.
 - (a) Both H2 and H2 do not exist
 - (b) H₂ is more stable than H₂⁺
 - (c) H₂⁺ is more stable than H₂⁻
 - (d) Both H₂ and H₂ are equally stable
- 62. 18 g of glucose (C₆H₁₂O₆) is added to 178.2 g of water. The vapour pressure of water for this aqueous solution is
 - (a) 76.00 torr
- (b) 752.40 torr
- (c) 759.00 torr
- (d) 7.60 torr
- 63. Mark the oxide which is amphoteric in character
 - (a) CO, (b) SiO, (c) SnO, (d) CaO
- 64. The standard EMF for the cell reaction,

 $Zn+Cu^{2+}\longrightarrow Cu+Zn^{2+}$ is 1.1 volt at 25°C. The EMF for the cell reaction, when 0.1 M Cu2+ and 0.1 M Zn2+ solutions are used, at 25°C is

- (a) 1.10V
- (b) 0.10 V
- (c) -1.10 V
- (d) -0.110 V
- 65. The reactant (X) in the reaction

$$(X)$$
 $\xrightarrow{CH_3COONa}$ $\xrightarrow{(CH_3CO)_2O}$ Cinnamic acid, is

- CH-OH
- The brown ring complex is formulated as [Fe(H2O)5 NO]SO4. The oxidation number of iron is
 - (a) 1
- (b) 2
- (c) 3
- (d) 0
- A substance C₄H₁₀O yields on oxidation a compound, C4H8O which gives an oxime and a positive iodoform test. The original substance on treatment with conc. H2SO4 gives C4H8. The structure of the compound is
 - (a) CH₃CH₂CH₂CH₂OH
 - (b) CH,CHOHCH,CH,
 - (c) (CH₃)₃COH
 - (d) CH,CH,-O-CH,CH,
- Number of moles of KMnO, required to exidize one mole of Fe(C,O4) in acidic medium is
 - (a) 0.167 (b) 0.6
- (c) 0.2
- (d) 0.4
- Predict the product C obtained in the following reaction of butyne-1.

$$CH_3CH_2 - C \equiv CH + HCI \longrightarrow B \xrightarrow{HI} C$$

(a)
$$CH_3 - CH_2 - CH_2 - C - H$$

$$\begin{tabular}{l} I \\ | \\ (b) CH_3-CH_2-CH-CH_2C1 \\ \end{tabular}$$

- The vapour pressure of a solvent A is 0.80 atm. When a non-volatile substance B is added to this solvent its vapour pressure drops to 0.6 atm. the mole fraction of B in the solution is
 - (a) 0.25
- (b) 0.50
- (c) 0.75
- (d) 0.90

71.	The electric cookers have a coating that protects		
	them against fire. The coating is made of		

- (a) heavy lead
- (b) zinc oxide
- (c) magnesium oxide (d) sodium sulphate
- 72. Chlorine is liberated when we heat
 - (a) KMnO₄+NaCl
- (b) K,Cr,O,+MnO,
- (c) Pb(NO₃), + MnO₃
- (d) K,Cr,O,+HCl

- (a) 1 M CaCl₂
- (b) I M NaCl
- (c) 1 M Phenol
- (d) 1 M sucrose

- (a) KNO,
- (b) K, [Fe (CN),]
- (c) Na,PO,
- (d) MgCl,

75. The element which has not yet been reacted with
$$F_2$$
 is

- (a) Ar
- (b) Xe
- (c) Kr
- (d) Rn

- (a) S
- (c) Se
- (b) O (d) Te 77. Which of the following is correct for a first order reaction?
 - (a) $t_{1/2} \propto a$
- (b) $t_{1/2} \propto 1/a$
- (c) $t_{1/2} \propto a^0$
- (d) $t_{1/2} \propto 1/a^2$

- (a) $-22.1 \text{ kJ mol}^{-1}$
- (b) -339.3 kJ mol⁻¹
- (c) -439.3 kJ mol⁻¹
- (d) $-523.2 \text{ kJ mol}^{-1}$

- (a) Melmac
- (b) Bakelite
- (c) Polythene
- (d) Vulcanised rubber

- (a) an acidic flux is needed
- (b) a basic flux is needed
- (c) both acidic and basic fluxes are needed
- (d) Neither of them is needed

81. $A \rightarrow B$, $\Delta H = -10 \text{kJ mol}^{-1}$, $E_{\text{art}} = 50 \text{ kJ mol}^{-1}$, then E_{w} of $B \rightarrow A$ will be

- (a) 40 kJ mol-1
- (b) 50kJ mol⁻¹
- (c) -50kJ mol⁻¹
- (d) 60 kJ mol-1
- At anode in the electrolysis of fused NaCl
 - (a) Na⁺ is oxidized
- (b) Cl is oxidized
- (c) Cl is reduced
- (d) Na is reduced
- 83. Molarity of liquid HCl will be, if density of solution is 1.17 g/cc
 - (a) 36.5
- (b) 32.05
- (c) 18.25
- (d) 42.10

- (a) KHCO3
- (b) NaHCO3
- (e) CsHCO3
- (d) LiHCO3
- 85. P2Os is heated with water to give
 - (a) hypophosphorous acid
 - (b) phosphorous acid
 - (c) hypophosphoric acid
 - (d) orthophosphoric acid
- What is the IUPAC name of the compound ?

- (a) 1, 1 dimethyl I cyclopentyl methane
- (b) 2 cyclopentyl propane
- (c) 1-(1-methyl) ethyl cyclopentane
- (d) Cumene.
- Which one of the following reactions is expected to readily give a hydrocarbon product in good

- (b) RCOO⁻Ag⁺ $\xrightarrow{Br_2}$
- (c) $CH_3CH_3 \xrightarrow{Cl_2} hv$

(d)
$$(CH_3)_3 CCI \xrightarrow{C_2H_5OH}$$

Among the trihalides of nitrogen which one is most basic?

- (a) NF₃
- (b) NCl₁
- (c) NI,
- (d) NBr.

- 89. Omeoprazole and lansoprazole are used as -
 - (a) antifertility
- (b) antiallergic
- (c) antibiotic
- (d) antacid
- 90. Hydrolysis of sucrose is called
 - (a) hydration
- (b) saponification
- (c) esterification
- (d) inversion
- van Arkel method of purification of metals involves converting the metal to a
 - (a) volatile stable compound
 - (b) volatile unstable compound
 - (c) non volatile stable compound
 - (d) None of the above
- When SO₂ is passed through acidified solution of potassium dichromate, then chromium sulphate is formed. The change in valency of chromium is
 - (a) +4 to +2
- (b) +5 to +3
- (c) +6 to +3
- (d) +7 to +2
- 93. Which of the following polymer is used for manufacturing of buckets, dustbins, pipes etc?
 - (a) Low density polythene
 - (b) High density polythene
 - (c) Teflon
 - (d) Polyacrylonitrile
- 94. What is X in the following reaction?

$$CH_3 \xrightarrow{X} H_2C \xrightarrow{C} C \xrightarrow{C} CH_3$$

- (a) CH₃OH, H₂SO₄
- (b) CH₃OH, CH₃O⁻Na
- (c) H2O/H2SO4 followed by CH3OH
- (d) CH₃MgBr/ether followed by H₃O⁺

95.
$$\bigcirc \longrightarrow \bigcap_{H \to O} \longrightarrow \bigcap_{A \to A} (A)$$

 $\xrightarrow{Zn(Hg)/HC1}$ (B)

In the above reaction, product (B) is:

- The compounds [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ constitutes a pair of
 - (a) coordination isomers
 - (b) linkage isomers
 - (c) ionization isomers
 - (d) optical isomers
- 97. Which of the following factors may be regarded as the main cause of lanthanoid contraction?
 - (a) Greater shielding of 5d electrons by 4f electrons
 - (b) Poorer shielding of 5d electrons by 4f electrons
 - (c) Effective shielding of one of 4f electrons by another in the subshell
 - (d) Poor shielding of one of 4f electron by another in the subshell
- The polymer used in making synthetic hair wigs is made up of
 - (a) CH2=CHCl
 - (b) CH₂=CHCOOCH₃
 - (c) $C_6H_5CH=CH_2$
 - (d) CH₂ = CH CH=CH₂
- 99. Which of the following is called Wilkinson's catalyst?
 - (a) [(Ph,P), RhCl]
- (b) TiCl₄+(C₂H₅)₃Al
- (c) (C₂H₅)₄ Pb
- (d) $[PtCl_2(NH_3)_2]$
- 100. One mole of an ideal gas is allowed to expand reversibly and adiabatically from a temperature of 27°C. If the work done during the process is 3 kJ, the final temperature will be equal to (C_v = 20 JK⁻¹)
 - (a) 150 K
- (b) 100 K
- (c) 26.85 K
- (d) 295 K

SECTION-B

MATHEMATICS

In an entrance test, there are multiple choice questions. There are four possible answers to each question, of which one is correct. The probability that a student knows the answer to a question is 90%. If he gets the correct answer to a question, then the probability that he was

(a) $\frac{1}{40}$ (b) $\frac{1}{39}$ (c) $\frac{1}{37}$ (d) $\frac{2}{43}$ 2. If $\pi/2 < x < \pi$, then $\int x \sqrt{\frac{1 + \cos 2x}{2}} dx =$

- (a) $\cos x + x \sin x + C$ (b) $-\cos x x \sin x + C$ (c) $\sin x + x \cos x + C$ (d) $x \sin x \cos x + C$
- A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, $\bar{y} = 3x$ and y =30 - 2x. The largest area of such a rectangle is (a) 135/8 (b) 45 (c) 135/2 (d) 90
- If $f: R \rightarrow R$ be a function defined by $f(x) = 4x^3 - 7$. Then
 - (a) f is one-one-into (b) f is many-one-into (c) f is many-one onto (d) f is bijective
- -((~ p) ∧ q) is equal to
 - (a) p∨(~q)
- (b) p v q
- (c) p∧(~q)
- (d) ~p∧~q
- With the usual notation $\int_{-\infty}^{\infty} ([x^2] [x]^2) dx$ is equal to
 - (a) $4+\sqrt{2}-\sqrt{3}$
- (b) $4-\sqrt{2}+\sqrt{3}$
- (d) none of these
- (c) $4-\sqrt{2}-\sqrt{3}$ 7. The general solution of

$$x(1+y^2)^{1/2}dx + y(1+x^2)^{1/2}dy = 0$$
 is

- (a) $\cos^{-1} x + \cos^{-1} y = C$
- (b) $x^2 + y^2 = (1 + x^2)^{1/2} + (1 + y^2)^{1/2} + C$
- (c) $(1+x^2)^{1/2} + (1+y^2)^{1/2} = C$
- (d) $\tan^{-1} x \tan^{-1} y = C$
- 8. If $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then A^{2008} is equal to

- Three vertices of a parallelogram ABCD are A (3, -1, 2), B (1, 2, -4) and C (-1, 1, 2). The coordinates of fourth vertex D are
 - (a) (1, 1, 1)
- (b) (1,-2, 8)

- (c) (2, -2, 6) (d) (1, 0, 2)The value of $\int \frac{\sin x + \cos x}{\sqrt{1 \sin 2x}} dx$ is equal to
 - (a) $\sqrt{\sin 2x + c}$
 - (b) $\sqrt{\cos 2x + c}$
 - (c) $\pm (\sin x \cos x) + c$
 - (d) $\pm \log(\sin x \cos x) + c$
- 11. The equation of the plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7), is (a) x+y+z=2 (b) x+y+z=3
- (c) x + y + z = 0
- (d) None of these
- The co-ordinates of the foot of perpendicular from the point A(1, 1, 1) on the line joining the points B (1, 4, 6) and C (5, 4, 4) are
 - (a) (3, 4, 5)
- (b) (4, 5, 3) (d) (-3, -4, 5)
- (c) (3, -4, 5)
- $(p \land \neg q) \land (\neg p \land q)$ is
- (a) A tautology
- (b) A contradiction (c) Both a tautology and a contradiction
- (d) Neither a tautology nor a contradiction
- Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. Then:
 - (a) m = 3, n = 6
- (b) m = 6, n = 3
- (c) m = 5, n = 6
- (d) None of these
- 15. Let f be the function defined by

$$f(x) = \begin{cases} \frac{x^2 - 1}{x^2 - 2|x - 1| - 1}, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$

- (a) The function is continuous for all values of x
- (b) The function is continuous only for x > 1
- (c) The function is continuous at x = 1
- (d) The function is not continuous at x = 116. The distance of the point (1, -2, 3) from the plane
 - x-y+z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{3}$ = $\frac{z-1}{-6}$ is (a) 1 (b) 2

- (d) None of these

17.
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 is equal to:

(a)
$$x \tan \frac{x}{2} + C$$
 (b) $\cot \frac{x}{2} + C$

(b)
$$\cot \frac{x}{2} + C$$

(c)
$$\log(1+\cos x) + C$$
 (d) $\log(x+\sin x) + C$

(d)
$$log(x + sin x) + C$$

18. The maximum value of
$$z = 6x + 8y$$
 subject to constraints $2x + y \le 30$, $x + 2y \le 24$ and $x \ge 0$, $y \ge 0$ is

(a) 90

(b) 120 (c) 96 (d) 240

(a) 90 (b) 120 (c) 96
19.
$$\int_{\pi/3}^{\pi/2} x \sin(\pi[x] - x) dx$$
 is equal to:

(a) $\frac{1}{2} + \frac{\pi}{6}$

(b)
$$1 - \frac{\sqrt{3}}{2} + \frac{\pi}{6}$$

(c)
$$-\frac{1}{2} - \frac{\pi}{6}$$
 (d) $\frac{\sqrt{3}}{2} - 1 - \frac{\pi}{6}$

20. The general solution of the equation $\tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \tan 4\theta \tan 7\theta$

(a)
$$\theta = \frac{n\pi}{4}$$

(b)
$$\theta = \frac{n\pi}{12}$$

(c)
$$\theta = \frac{n\pi}{6}$$

(d) None of these

21. For non zero, non collinear vectors p and q, the value of $[\hat{i} \ p \ q]\hat{i} + [\hat{j} \ p \ q]\hat{j} + [\hat{k} \ p \ q]\hat{k}$ is

(a) 0

(b)
$$2(p \times q)$$

(c)
$$(\overrightarrow{q} \times \overrightarrow{p})$$

(d)
$$(\overrightarrow{p} \times \overrightarrow{q})$$

22. Let $f(\theta) = \sin \theta (\sin \theta + \sin 3\theta)$ then

(a)
$$f(\theta) \ge 0 \ \forall \theta \in R$$
 (b) $f(\theta) \le 0 \ \forall \theta \in R$

(c)
$$f(\theta) \ge 1 \forall \theta \in R$$
 (d) $f(\theta) \le 1 \forall \theta \in R$

23. The maximum value of z = 5x + 2y, subject to the constraints $x + y \le 7$, $x + 2y \le 10$, $x, y \ge 0$ is (d) 70 (b) 26 (c) 35

24. The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semivertical angle 30° is

(a) $4000 \,\pi/3 \, \text{cm}^3$

(b) $400\pi/3$ cm³

(c) $4000\pi/\sqrt{3}$ cm³

(d) None of these

25. The equation of the plane through the line x+y+z+3=0=2x-y+3z+1 and parallel to the

line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$, is (a) x - 5y + 3z = 7(c) x + 5y + 3z = 7

(b) x-5y+3z=-7(d) x+5y+3z=-7

26. Let a, b and c be non-coplanar unit vectors equally inclined to one another at an acute angle

θ. Then [a b c] in terms of θ is equal to:

(a)
$$(1 + \cos \theta) \sqrt{\cos 2\theta}$$

(b)
$$(1 + \cos \theta) \sqrt{1 - 2\cos 2\theta}$$

(c)
$$(1-\cos\theta)\sqrt{1+2\cos\theta}$$

(d) None of these

27. General solution of the equation

 $\sin 2x - \sin 4x + \sin 6x = 0$ is

(a)
$$\frac{n\pi}{4}$$
 or $n\pi \pm \frac{\pi}{6}$ (b) $n\pi$ or $n\pi \pm \frac{\pi}{3}$

(b)
$$n\pi \text{ or } n\pi \pm \frac{\pi}{3}$$

(c)
$$n\pi \pm \frac{\pi}{4}$$

(d)
$$n\pi$$
 or $2n\pi \pm \frac{\pi}{4}$

(c) $n\pi \pm \frac{\pi}{4}$ (d) $n\pi$ or $2n\pi \pm \frac{\pi}{4}$ 28. A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is

(a) $\frac{8}{3}$ (b) $\frac{2}{3}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$

(d)
$$\frac{5}{3}$$

29. The locus of a point that is equidistant from the lines $x + y - 2\sqrt{2} = 0$ and $x + y - \sqrt{2} = 0$ is

(a)
$$x + y - 5\sqrt{2} = 0$$

(a)
$$x+y-5\sqrt{2}=0$$
 (b) $x+y-3\sqrt{2}=0$

(c)
$$2x+2y-3\sqrt{2}=0$$
 (d) $2x+2y-5\sqrt{2}=0$

30. A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates

(a)
$$\left(\frac{13}{5}, 0\right)$$
 (b) $\left(\frac{5}{13}, 0\right)$ (c) $(-7, 0)$ (d) None of these

(b)
$$\left(\frac{5}{13}, 0\right)$$

31. If
$$x \in \mathbb{R} - \{0\}$$
, then $\tan^{-1} \left(\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right)$

(a)
$$\frac{1}{2} \cos^{-1}(x^2)$$

(a)
$$\frac{1}{2}\cos^{-1}(x^2)$$
 (b) $\frac{\pi}{2} + \frac{1}{2}\cos^{-1}(x^2)$

(c)
$$\frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2)$$
 (d) None of these

32. If
$$y = x^{x^2}$$
, then $\frac{dy}{dx}$ is equal to

(a) $(2 \ln x)$ (b) $(2 \ln x)$

(c)
$$(\ln \ln x + 1)x^{x^2}$$
 (d) None of these

MHT-CET 2020 2020-11

33.	In a triangle ABC, $\angle C = 90^{\circ}$, then $\frac{a^2 - b^2}{a^2 + b^2}$ is	42.	The area of the region bounded by the curves $y = x-2 , x = 1, x = 3$ and the x-axis is		
	equal to:		(a) 4 (b) 2 (c) 3 (d) 1		
	(a) sin (A+B) (b) sin (A-B)	43.	If the slope of the tangent at (x, y) to a curve passing		
	(c) $\cos(A+B)$ (d) $\sin\left(\frac{A-B}{2}\right)$		through $\left(1, \frac{\pi}{4}\right)$ is given by $\frac{y}{x} - \cos^2\left(\frac{y}{x}\right)$, then		
34.	The internal angles of a convex polygon are		the equation of the curve is:		
	in A.P. The smallest angle is 120° and the common		(a) $y = \tan^{-1} \log (e/x)$		
	difference is 5°. The number to sides of the				
	polygon is		(b) $y = e^{1+\cot(y/x)}$		
	(a) 8 (b) 9 (c) 10 (d) 16		(c) $y = x \tan^{-1} \log(e/x)$		
35.	In a binomial distribution $n = 5$, $P(X=1) = 0.4096$		(d) $y = e^{1+\tan(y/x)}$		
	and P $(X = 2) = 0.2048$, then the mean of the		44. A fair coin is tossed 99 times. If X is the number		
	distribution is equal to		of times head occurs, P(X=r) is maximum when r		
	(a) 1 (b) 1.5 (c) 2 (d) 2.5		is		
36.	The equation of tangent to the curve		(a) 49 or 50 (b) 50 or 51		
	$y = \sin^{-1} \frac{2x}{1 + x^2}$ at $x = \sqrt{3}$ is		(c) 51 (d) None of these		
	(To A 1	45.	The fourth term of an A.P. is three times of the		
	(a) $y = -\frac{1}{2}(x - \sqrt{3})$		first term and the seventh term exceeds the twice		
	2(4 (3)		of the third term by one, then the common		
	(b) $y - \frac{\pi}{3} = -\frac{1}{3}(x - \sqrt{3})$		difference of the progression is		
	(0) $y_3 = 2(x_1 + y_2)$		(a) 2 (b) 3 (c) $\frac{3}{2}$ (d) -1		
	(c) $y + \frac{\pi}{3} = -\frac{1}{2}(x - \sqrt{3})$		(a) 2 (b) 3 (c) $\frac{1}{2}$ (d) -1		
		46.	The eccentricity of the hyperbola		
37.	(d) None of these Let A, B be two events such that the probability		$x^2 - 3y^2 = 2x + 8$ is		
31.			and the second s		
	of A is $\frac{3}{10}$ and conditional probability of A given		(a) $\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\frac{3}{2}$		
	THE STATE OF THE S		3 7 73 2		
	B is $\frac{1}{2}$. The probability that exactly one of the	47.	The differential equation representing the family		
	events A or B happen equals		of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive		
	(a) $\frac{1}{2}$ (b) $\frac{1}{6}$ (c) $\frac{3}{10}$ (d) $\frac{7}{10}$		parameter, is of		
	(a) $\frac{1}{2}$ (b) $\frac{1}{6}$ (c) $\frac{1}{10}$ (d) $\frac{1}{10}$		(a) order 3 (b) order 2		
38.	If the line passing through $P(1, 2)$ making an		(c) degree 3 (d) degree 4		
	angle with the x-axis in the positive direction				
	meets the pair of lines $x^2 + 4xy + y^2$ at A and B,	48.	If $f(x) = \frac{1}{1-x}$, the number of points of		
	then $PA \cdot PB =$		1-x discontinuity of $f\{f[f(x)]\}$ is:		
10.000	(a) 13/3 (b) 13/6 (c) 11/6 (d) 11/3		(a) 2 (b) 1 (c) 0 (d) infinite		
39.	If the curves $ay + x^2 = 7$ and $x^3 = y$ cut	49.	- NACCO TO		
	orthogonally at $(1, 1)$, then the value of a is.	49.	If $x = a(\cos t + t \sin t)$ and $y = a(\sin t - t \cos t)$,		
	(a) 5 (b) 6 (c) 7 (d) 8		then $\frac{d^2y}{dx^2}$ is		
40.	The value of $\cos \left(2\cos^{-1}x + \sin^{-1}x\right)$ at $x = \frac{1}{5}$ is		dx^2		
			(a) $\sec^3 t$ (b) $at \sec^3 t$		
	(a) $-\frac{2\sqrt{6}}{5}$ (b) $-2\sqrt{6}$ (c) $-\frac{\sqrt{6}}{5}$ (d) None				
41			(c) $\frac{\sec t}{\cot t}$ (d) $\sec^2 t$		
41.		50.	The number of solutions of equation		
	$\sim (\sim p \Rightarrow q)$				

 $x_2 - x_3 = 1$, $-x_1 + 2x_3 = 2$, $x_1 - 2x_2 = 3$ is (a) zero (b) one (c) two (d) infinite

(c) $\sim p \wedge q$

(b) $p \wedge \sim q$ (d) $\sim p \land \sim q$

(a) $p \wedge q$